Python Interview Preparation Guide [2025]

Prepare for 2025 Python interviews with this comprehensive Python Interview Preparation Guide [2025], featuring 100+ Python coding interview questions with solutions 2025. Covering Python interview questions for freshers 2025, Python scripting for DevOps interview questions 2025, Python OOPs interview questions and answers 2025, and Advanced Python interview questions for data science & automation 2025, it equips candidates with Python 3, Django, Pandas, NumPy, and cloud tool expertise. Master IT, AI, and DevOps interviews with practical solutions for scalable, efficient Python applications in technical roles.

Sep 6, 2025 - 11:21
Sep 9, 2025 - 17:39
 0  3
Python Interview Preparation Guide [2025]

Python Interview Preparation Guide [2025]

Python remains a cornerstone for software development, data science, and DevOps due to its simplicity and versatility. This guide provides 103 scenario-based questions for freshers, experienced developers, and experts, covering core Python, data structures, web frameworks, DevOps integration, and testing. It equips you with practical insights to excel in technical interviews.

Core Python Concepts

1. What is Python, and why is it widely used in 2025?

Python is an interpreted, high-level language known for readability and versatility.

  • Used in web development (Flask), data science (Pandas), and automation (Ansible).
  • Supports rapid prototyping and scalability.
  • Large community and libraries like NumPy drive adoption.
    Its simplicity accelerates development across industries.

2. How do Python’s Global Interpreter Lock (GIL) impact multithreading?

The GIL allows only one thread to execute Python bytecode at a time, limiting true parallelism in CPython.
Use multiprocessing for CPU-bound tasks or asyncio for I/O-bound tasks to bypass GIL limitations, improving performance in multithreaded Python applications.

3. What is the difference between a list and a tuple in Python?

  • List: Mutable, defined with [], e.g., [1, 2, 3]. Supports append/remove.
  • Tuple: Immutable, defined with (), e.g., (1, 2, 3). Faster for iteration.
    Use lists for dynamic data, tuples for fixed data to optimize memory in Python.

4. How do you handle exceptions in Python?

Use try, except, else, and finally blocks:

try:
    result = 10 / 0
except ZeroDivisionError:
    print("Cannot divide by zero")
else:
    print("Division successful")
finally:
    print("Cleanup")

This ensures robust error handling in Python applications.

5. What are Python decorators, and how do they work?

Decorators wrap functions to modify behavior.

def log(func):
    def wrapper(*args, **kwargs):
        print(f"Calling {func.__name__}")
        return func(*args, **kwargs)
    return wrapper

@log
def add(a, b):
    return a + b

The @log decorator logs function calls, enhancing modularity in Python.

6. How do you manage memory in Python?

Python uses automatic garbage collection via reference counting and a cyclic garbage collector.

  • Use gc module to manage cycles.
  • Monitor memory with tracemalloc.
    This prevents memory leaks in large Python applications.

7. What is the difference between __str__ and __repr__ in Python?

  • __str__: User-friendly string representation, e.g., str(obj).
  • __repr__: Developer-friendly, unambiguous representation, e.g., repr(obj).
class Person:
    def __str__(self): return "Person"
    def __repr__(self): return "Person()"

Use __str__ for readability, __repr__ for debugging.

8. How do you implement a context manager in Python?

Use with statement or define __enter__ and __exit__:

class FileManager:
    def __init__(self, filename):
        self.filename = filename
    def __enter__(self):
        self.file = open(self.filename, 'r')
        return self.file
    def __exit__(self, exc_type, exc_val, exc_tb):
        self.file.close()

This ensures resource cleanup, like closing files, in Python.

9. What are Python’s lambda functions, and when are they useful?

Lambda functions are anonymous, single-expression functions:

square = lambda x: x * x

Use for short, inline operations in map(), filter(), or sorting to simplify Python code.

10. How do you achieve concurrency in Python?

  • Threading: Use threading for I/O-bound tasks, limited by GIL.
  • Multiprocessing: Use multiprocessing for CPU-bound tasks.
  • Asyncio: Use asyncio for asynchronous I/O.
import asyncio
async def task():
    await asyncio.sleep(1)
    print("Task done")
asyncio.run(task())

Choose based on task type for optimal Python performance.

11. What is the difference between == and is in Python?

  • == checks value equality, e.g., [1, 2] == [1, 2].
  • is checks identity (same memory), e.g., a is b.
    Use == for data comparison, is for object identity in Python.

12. How do you use list comprehensions in Python?

List comprehensions provide concise list creation:

squares = [x**2 for x in range(5)]
# Output: [0, 1, 4, 9, 16]

Use for readable, efficient data transformations in Python.

13. What are Python generators, and why are they memory-efficient?

Generators yield items one at a time using yield:

def fibonacci(n):
    a, b = 0, 1
    for _ in range(n):
        yield a
        a, b = b, a + b

They avoid storing entire sequences in memory, ideal for large datasets in Python.

14. How do you handle file I/O in Python?

Use open() with with for safe file handling:

with open('file.txt', 'w') as f:
    f.write("Hello, Python!")

This ensures files are closed properly, preventing resource leaks in Python.

15. What is the purpose of __init__ in Python classes?

__init__ initializes instance attributes:

class Car:
    def __init__(self, brand):
        self.brand = brand

It sets up objects during instantiation in Python.

Data Structures and Algorithms

16. How do you implement a stack in Python?

Use a list as a stack with append() and pop():

stack = []
stack.append(1)  # Push
stack.pop()      # Pop

Lists provide efficient LIFO operations for Python stacks.

17. How do you reverse a linked list in Python?

class Node:
    def __init__(self, data):
        self.data = data
        self.next = None

def reverse_list(head):
    prev, curr = None, head
    while curr:
        curr.next, prev, curr = prev, curr, curr.next
    return prev

This reverses a linked list iteratively, optimizing space complexity in Python.

18. What is the time complexity of Python’s dictionary operations?

  • Lookup, insertion, deletion: O(1) average case (hash table).
  • Worst case: O(n) due to hash collisions.
    Use dictionaries for fast key-value access in Python.

19. How do you implement a binary search in Python?

def binary_search(arr, target):
    left, right = 0, len(arr) - 1
    while left <= right:
        mid = (left + right) // 2
        if arr[mid] == target:
            return mid
        elif arr[mid] < target:
            left = mid + 1
        else:
            right = mid - 1
    return -1

Requires a sorted array, with O(log n) time complexity in Python.

20. How do you find the longest common substring in Python?

Use dynamic programming:

def lcs(str1, str2):
    m, n = len(str1), len(str2)
    dp = [[0] * (n + 1) for _ in range(m + 1)]
    max_len, end = 0, 0
    for i in range(1, m + 1):
        for j in range(1, n + 1):
            if str1[i-1] == str2[j-1]:
                dp[i][j] = dp[i-1][j-1] + 1
                if dp[i][j] > max_len:
                    max_len = dp[i][j]
                    end = i
    return str1[end-max_len:end]

This finds the longest common substring with O(m*n) time complexity.

21. How do you implement a queue in Python?

Use collections.deque for efficient queue operations:

from collections import deque
queue = deque()
queue.append(1)  # Enqueue
queue.popleft()  # Dequeue

deque provides O(1) append and pop operations for Python queues.

22. How do you detect a cycle in a linked list in Python?

Use Floyd’s cycle-finding algorithm:

def has_cycle(head):
    slow = fast = head
    while fast and fast.next:
        slow = slow.next
        fast = fast.next.next
        if slow == fast:
            return True
    return False

This detects cycles with O(n) time and O(1) space in Python.

23. What is the difference between a set and a frozenset in Python?

  • Set: Mutable, e.g., set([1, 2]). Supports add/remove.
  • Frozenset: Immutable, e.g., frozenset([1, 2]). Usable as dictionary keys.
    Use frozenset for hashable collections in Python.

24. How do you implement a priority queue in Python?

Use heapq for a min-heap-based priority queue:

import heapq
pq = []
heapq.heappush(pq, (1, "task1"))
heapq.heappop(pq)  # Pop lowest priority

heapq ensures O(log n) push/pop operations in Python.

25. How do you merge two sorted lists in Python?

def merge_sorted_lists(list1, list2):
    result = []
    i, j = 0, 0
    while i < len(list1) and j < len(list2):
        if list1[i] <= list2[j]:
            result.append(list1[i])
            i += 1
        else:
            result.append(list2[j])
            j += 1
    result.extend(list1[i:])
    result.extend(list2[j:])
    return result

This merges lists in O(n+m) time, preserving order in Python.

26. How do you find the kth largest element in an array?

Use a min-heap with heapq:

import heapq
def kth_largest(arr, k):
    heap = arr[:k]
    heapq.heapify(heap)
    for num in arr[k:]:
        if num > heap[0]:
            heapq.heapreplace(heap, num)
    return heap[0]

This finds the kth largest in O(n log k) time in Python.

27. How do you implement a trie in Python?

class TrieNode:
    def __init__(self):
        self.children = {}
        self.is_end = False

class Trie:
    def __init__(self):
        self.root = TrieNode()
    def insert(self, word):
        node = self.root
        for char in word:
            if char not in node.children:
                node.children[char] = TrieNode()
            node = node.children[char]
        node.is_end = True

Tries enable efficient string operations like prefix search in Python.

28. How do you reverse a string in Python?

Use slicing for simplicity:

def reverse_string(s):
    return s[::-1]

This reverses a string in O(n) time, leveraging Python’s slicing efficiency.

29. How do you check if a string is a palindrome?

def is_palindrome(s):
    s = s.lower().replace(" ", "")
    return s == s[::-1]

This checks palindromes in O(n) time, ignoring spaces and case in Python.

30. How do you implement a depth-first search (DFS) in Python?

def dfs(graph, node, visited=None):
    if visited is None:
        visited = set()
    visited.add(node)
    for neighbor in graph[node]:
        if neighbor not in visited:
            dfs(graph, neighbor, visited)
    return visited

DFS explores graphs recursively, useful for pathfinding in Python.

Web Development with Python

31. How do you build a REST API with Flask?

from flask import Flask, jsonify, request
app = Flask(__name__)

@app.route('/api', methods=['GET'])
def get_data():
    return jsonify({"message": "Hello, Flask!"})

if __name__ == '__main__':
    app.run(debug=True)

Flask enables lightweight REST APIs with JSON responses in Python.

32. How do you handle database connections in Django?

Use Django’s ORM with a database configuration:

# settings.py
DATABASES = {
    'default': {
        'ENGINE': 'django.db.backends.postgresql',
        'NAME': 'mydb',
        'USER': 'user',
        'PASSWORD': 'password',
        'HOST': 'localhost',
        'PORT': '5432',
    }
}

This abstracts database interactions, ensuring scalability in Python.

33. What is middleware in Django, and how do you create custom middleware?

Middleware processes requests/responses globally.

class CustomMiddleware:
    def __init__(self, get_response):
        self.get_response = get_response
    def __call__(self, request):
        print("Processing request")
        response = self.get_response(request)
        return response

Add to settings.py for request logging in Django.

34. How do you handle authentication in Flask?

Use flask-jwt-extended for JWT-based authentication:

from flask_jwt_extended import JWTManager, jwt_required
app = Flask(__name__)
app.config['JWT_SECRET_KEY'] = 'secret'
jwt = JWTManager(app)

@app.route('/protected', methods=['GET'])
@jwt_required()
def protected():
    return jsonify({"msg": "Authenticated"})

This secures Flask APIs with token-based authentication.

35. How do you optimize a Django application for performance?

  • Use select_related for foreign keys.
  • Cache views with Redis.
  • Enable database indexing.
  • Use gunicorn for production.
    This reduces query times and improves scalability in Python.

36. How do you implement WebSockets in Python with FastAPI?

from fastapi import FastAPI, WebSocket
app = FastAPI()

@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
    await websocket.accept()
    await websocket.send_text("Connected")
    await websocket.close()

FastAPI supports real-time communication for Python web apps.

37. How do you handle file uploads in Flask?

from flask import Flask, request
app = Flask(__name__)

@app.route('/upload', methods=['POST'])
def upload_file():
    file = request.files['file']
    file.save('uploads/' + file.filename)
    return "File uploaded"

This securely handles file uploads in Flask applications.

38. How do you configure CORS in a Flask API?

Use flask-cors:

from flask_cors import CORS
app = Flask(__name__)
CORS(app)

This enables cross-origin requests for Flask APIs in Python.

39. How do you implement rate limiting in FastAPI?

Use fastapi-limiter:

from fastapi import FastAPI
from fastapi_limiter import FastAPILimiter
import redis.asyncio as redis

app = FastAPI()
@app.on_event("startup")
async def startup():
    redis_instance = redis.Redis(host='localhost', port=6379)
    await FastAPILimiter.init(redis_instance)

@app.get("/limited")
async def limited_route():
    return {"msg": "Rate-limited endpoint"}

This restricts API usage, enhancing security in Python.

40. How do you deploy a Python web app to AWS?

Use Elastic Beanstalk:

# requirements.txt
flask==2.0.1
gunicorn==20.1.0
  • Create application.py with Flask app.
  • Deploy with eb deploy.
  • Monitor with CloudWatch.
    This ensures scalable deployment in Python.

DevOps Integration with Python

41. How do you automate infrastructure provisioning with Python?

Use boto3 for AWS provisioning:

import boto3
ec2 = boto3.client('ec2')
response = ec2.run_instances(
    ImageId='ami-12345678',
    InstanceType='t2.micro',
    MinCount=1,
    MaxCount=1
)

This automates EC2 instance creation in Python.

42. How do you integrate Python with Jenkins for CI/CD?

Use python-jenkins:

import jenkins
server = jenkins.Jenkins('http://localhost:8080', username='user', password='pass')
server.build_job('my-job')

This triggers Jenkins builds from Python scripts.

43. How do you use Python for log parsing in DevOps?

Use re for log analysis:

import re
with open('app.log') as f:
    errors = [line for line in f if re.search(r'ERROR', line)]

This extracts error logs efficiently in Python.

44. How do you automate Docker container management with Python?

Use docker library:

import docker
client = docker.from_env()
client.containers.run('nginx', ports={'80/tcp': 8080})

This automates container deployment in Python.

45. How do you monitor system resources with Python?

Use psutil:

import psutil
cpu_usage = psutil.cpu_percent()
memory = psutil.virtual_memory().percent
print(f"CPU: {cpu_usage}%, Memory: {memory}%")

This tracks resource usage for DevOps monitoring in Python.

46. How do you use Python to interact with Kubernetes?

Use kubernetes client:

from kubernetes import client, config
config.load_kube_config()
v1 = client.CoreV1Api()
pods = v1.list_pod_for_all_namespaces()

This manages Kubernetes resources programmatically in Python.

47. How do you automate AWS Lambda deployments with Python?

Use boto3:

import boto3
lambda_client = boto3.client('lambda')
with open('function.zip', 'rb') as f:
    lambda_client.update_function_code(
        FunctionName='myFunction',
        ZipFile=f.read()
    )

This automates serverless deployments in Python.

48. How do you use Python for configuration management in DevOps?

Use ansible programmatically:

from ansible.module_utils.basic import AnsibleModule
module = AnsibleModule(argument_spec={})
module.exit_json(changed=False, msg="Configured")

This integrates Python with Ansible for DevOps automation.

49. How do you implement a Python script for health checks?

import requests
def health_check(url):
    try:
        response = requests.get(url)
        return response.status_code == 200
    except:
        return False

This monitors application health in DevOps pipelines.

50. How do you use Python to parse Prometheus metrics?

Use prometheus-client:

from prometheus_client import Gauge
gauge = Gauge('app_metrics', 'Application metrics')
gauge.set(42)

This exposes metrics for Prometheus monitoring in Python.

Testing and Debugging

51. How do you write unit tests in Python using unittest?

import unittest
class TestMath(unittest.TestCase):
    def test_add(self):
        self.assertEqual(1 + 1, 2)
if __name__ == '__main__':
    unittest.main()

This ensures code reliability with automated tests in Python.

52. How do you use pytest for testing Python code?

def test_add():
    assert 1 + 1 == 2

Run with pytest to execute tests and generate reports in Python.

53. How do you mock dependencies in Python tests?

Use unittest.mock:

from unittest.mock import patch
def test_api_call():
    with patch('requests.get') as mocked_get:
        mocked_get.return_value.status_code = 200
        assert requests.get('http://example.com').status_code == 200

This isolates dependencies for reliable testing in Python.

54. How do you debug Python code effectively?

Use pdb:

import pdb
def buggy_function():
    x = 1 / 0
    pdb.set_trace()

This allows interactive debugging with breakpoints in Python.

55. How do you measure code coverage in Python?

Use coverage.py:

coverage run -m pytest
coverage report

This tracks test coverage, ensuring thorough testing in Python.

56. How do you test asynchronous Python code?

Use pytest-asyncio:

import pytest
import asyncio
@pytest.mark.asyncio
async def test_async_function():
    await asyncio.sleep(1)
    assert True

This tests async functions in Python applications.

57. How do you handle flaky tests in Python?

  • Use pytest-rerunfailures:
pytest --reruns 5
  • Isolate dependencies with mocks.
  • Log test runs for analysis.
    This reduces test flakiness in Python.

58. How do you perform integration testing in Python?

Use pytest with real dependencies:

def test_db_connection():
    conn = connect_to_db()
    assert conn.is_active()

This validates system interactions in Python.

59. How do you use Python’s logging module for debugging?

import logging
logging.basicConfig(level=logging.DEBUG)
logging.debug("Debugging info")

This logs detailed information for debugging Python applications.

60. How do you test REST APIs in Python?

Use requests with pytest:

import requests
def test_api():
    response = requests.get('http://api.example.com')
    assert response.status_code == 200

This verifies API functionality in Python.

Advanced Python Topics

61. How do you implement a metaclass in Python?

class Meta(type):
    def __new__(cls, name, bases, attrs):
        attrs['custom'] = True
        return super().__new__(cls, name, bases, attrs)

class MyClass(metaclass=Meta):
    pass

Metaclasses customize class creation in Python.

62. How do you use Python’s asyncio for concurrent programming?

import asyncio
async def main():
    await asyncio.gather(
        asyncio.sleep(1, result="Task1"),
        asyncio.sleep(1, result="Task2")
    )
asyncio.run(main())

asyncio handles I/O-bound concurrency efficiently in Python.

63. What is Python’s dataclasses module, and how is it used?

from dataclasses import dataclass
@dataclass
class Person:
    name: str
    age: int

dataclasses simplifies class definitions with automatic methods in Python.

64. How do you optimize Python code for performance?

  • Use list comprehensions over loops.
  • Leverage numba for JIT compilation.
  • Profile with cProfile.
  • Use multiprocessing for parallel tasks.
    This enhances Python code efficiency.

65. How do you handle large datasets in Python?

Use pandas for data manipulation:

import pandas as pd
df = pd.read_csv('large.csv', chunksize=1000)
for chunk in df:
    process(chunk)

This processes data in chunks, optimizing memory in Python.

66. How do you implement a custom iterator in Python?

class MyRange:
    def __init__(self, n):
        self.i, self.n = 0, n
    def __iter__(self):
        return self
    def __next__(self):
        if self.i < self.n:
            i = self.i
            self.i += 1
            return i
        raise StopIteration

This creates a custom iterable in Python.

67. How do you use Python’s functools module?

Use partial for function customization:

from functools import partial
def multiply(x, y):
    return x * y
double = partial(multiply, 2)

This simplifies function calls in Python.

68. How do you implement a singleton pattern in Python?

class Singleton:
    _instance = None
    def __new__(cls):
        if cls._instance is None:
            cls._instance = super().__new__(cls)
        return cls._instance

This ensures a single instance in Python applications.

69. How do you use Python’s multiprocessing for parallel processing?

from multiprocessing import Pool
def square(n):
    return n * n
with Pool(4) as p:
    results = p.map(square, [1, 2, 3])

This parallelizes tasks, bypassing GIL in Python.

70. How do you handle memory leaks in Python?

Use tracemalloc to track allocations:

import tracemalloc
tracemalloc.start()
snapshot = tracemalloc.take_snapshot()
top_stats = snapshot.statistics('lineno')

This identifies memory leaks in Python applications.

Python in Data Science

71. How do you use pandas for data analysis?

import pandas as pd
df = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})
mean = df['A'].mean()

pandas simplifies data manipulation and analysis in Python.

72. How do you visualize data with matplotlib?

import matplotlib.pyplot as plt
plt.plot([1, 2, 3], [4, 5, 6])
plt.show()

This creates visualizations for data insights in Python.

73. How do you perform machine learning with scikit-learn?

from sklearn.linear_model import LinearRegression
X = [[1], [2], [3]]
y = [2, 4, 6]
model = LinearRegression().fit(X, y)

This trains a linear regression model in Python.

74. How do you handle missing data in pandas?

import pandas as pd
df = pd.DataFrame({'A': [1, None, 3]})
df['A'].fillna(df['A'].mean(), inplace=True)

This imputes missing values, ensuring data integrity in Python.

75. How do you use numpy for numerical computations?

import numpy as np
arr = np.array([1, 2, 3])
squared = np.square(arr)

numpy enables efficient array operations in Python.

76. How do you perform data aggregation in pandas?

import pandas as pd
df = pd.DataFrame({'group': ['A', 'A', 'B'], 'value': [1, 2, 3]})
grouped = df.groupby('group').sum()

This aggregates data by groups in Python.

77. How do you use seaborn for advanced visualizations?

import seaborn as sns
sns.heatmap([[1, 2], [3, 4]])

seaborn enhances data visualizations in Python.

78. How do you optimize pandas for large datasets?

Use dask for out-of-memory computation:

import dask.dataframe as dd
ddf = dd.read_csv('large.csv')

This scales pandas operations for big data in Python.

79. How do you perform feature scaling in scikit-learn?

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_scaled = scaler.fit_transform([[1], [2], [3]])

This normalizes features for machine learning in Python.

80. How do you save and load machine learning models in Python?

Use joblib:

from sklearn.linear_model import LinearRegression
import joblib
model = LinearRegression()
joblib.dump(model, 'model.pkl')
model = joblib.load('model.pkl')

This persists models for reuse in Python.

Python in DevOps

81. How do you automate cloud resource management with Python?

Use boto3 for AWS:

import boto3
s3 = boto3.client('s3')
s3.create_bucket(Bucket='my-bucket')

This automates S3 bucket creation in Python.

82. How do you use Python for CI/CD pipeline scripting?

Use python-jenkins:

import jenkins
server = jenkins.Jenkins('http://localhost:8080', username='user', password='pass')
server.create_job('new-job', config_xml)

This automates Jenkins job creation in Python.

83. How do you parse JSON logs in Python?

import json
with open('logs.json') as f:
    logs = json.load(f)

This extracts data from JSON logs in DevOps pipelines.

84. How do you use Python to monitor API health?

import requests
def check_api(url):
    response = requests.get(url)
    return response.status_code == 200

This monitors API availability in DevOps.

85. How do you automate SSH tasks with Python?

Use paramiko:

import paramiko
client = paramiko.SSHClient()
client.connect('hostname', username='user', password='pass')
client.exec_command('ls')

This automates SSH operations in Python.

86. How do you use Python for Prometheus metrics?

from prometheus_client import Counter
counter = Counter('requests_total', 'Total requests')
counter.inc()

This exposes custom metrics for DevOps monitoring.

87. How do you automate backups with Python?

import shutil
shutil.copy('data.db', 'backup.db')

This automates file backups in DevOps.

88. How do you use Python to interact with Git?

Use gitpython:

from git import Repo
repo = Repo('path/to/repo')
repo.git.commit('-m', 'Automated commit')

This automates Git operations in Python.

89. How do you use Python for log aggregation?

import glob
logs = []
for file in glob.glob('*.log'):
    with open(file) as f:
        logs.extend(f.readlines())

This aggregates logs for DevOps analysis.

90. How do you automate Kubernetes deployments with Python?

from kubernetes import client, config
config.load_kube_config()
v1 = client.AppsV1Api()
v1.create_namespaced_deployment('default', deployment)

This automates Kubernetes deployments in Python.

Advanced Scenarios

91. How do you handle race conditions in Python?

Use threading.Lock:

from threading import Lock
lock = Lock()
def safe_increment(counter):
    with lock:
        counter.value += 1

This prevents race conditions in multithreaded Python apps.

92. How do you implement a thread pool in Python?

Use concurrent.futures:

from concurrent.futures import ThreadPoolExecutor
def task(n):
    return n * n
with ThreadPoolExecutor(max_workers=4) as executor:
    results = executor.map(task, [1, 2, 3])

This manages thread pools efficiently in Python.

93. How do you optimize Python for high-performance computing?

Use numba:

from numba import jit
@jit
def fast_sum(arr):
    total = 0
    for x in arr:
        total += x
    return total

numba compiles Python to machine code for performance.

94. How do you handle large JSON files in Python?

Use ijson for streaming:

import ijson
with open('large.json') as f:
    for item in ijson.items(f, 'item'):
        process(item)

This processes large JSON files memory-efficiently.

95. How do you implement a custom descriptor in Python?

class Descriptor:
    def __get__(self, obj, owner):
        return obj._value
    def __set__(self, obj, value):
        obj._value = value

Descriptors control attribute access in Python classes.

96. How do you use Python for distributed systems?

Use celery:

from celery import Celery
app = Celery('tasks', broker='redis://localhost')
@app.task
def add(x, y):
    return x + y

This distributes tasks across workers in Python.

97. How do you handle Python package dependencies?

Use pip and requirements.txt:

pip freeze > requirements.txt
pip install -r requirements.txt

This ensures consistent environments in Python.

98. How do you profile Python code performance?

Use cProfile:

import cProfile
cProfile.run('my_function()')

This identifies performance bottlenecks in Python.

99. How do you implement a circuit breaker in Python?

class CircuitBreaker:
    def __init__(self, max_failures, reset_timeout):
        self.max_failures = max_failures
        self.reset_timeout = reset_timeout
        self.failures = 0
        self.last_failure = 0

This prevents cascading failures in distributed Python apps.

100. How do you use Python for data streaming?

Use confluent-kafka:

from confluent_kafka import Consumer
consumer = Consumer({'bootstrap.servers': 'localhost:9092', 'group.id': 'mygroup'})
consumer.subscribe(['mytopic'])
msg = consumer.poll()

This processes streaming data in Python.

101. How do you implement a rate limiter in Python?

from time import time, sleep
class RateLimiter:
    def __init__(self, calls, period):
        self.calls = calls
        self.period = period
        self.times = []
    def allow(self):
        now = time()
        self.times = [t for t in self.times if now - t < self.period]
        if len(self.times) < self.calls:
            self.times.append(now)
            return True
        return False

This limits API calls in Python applications.

102. How do you use Python for log rotation?

Use logging.handlers:

import logging
from logging.handlers import RotatingFileHandler
logger = logging.getLogger('myapp')
handler = RotatingFileHandler('app.log', maxBytes=10000, backupCount=5)
logger.addHandler(handler)

This manages log files in DevOps environments.

103. How do you secure Python applications?

  • Use secrets for random tokens.
  • Validate inputs with schema.
  • Encrypt with cryptography.
  • Monitor with Prometheus.
    This ensures secure Python applications.

Tips to Ace Python Interviews

  • Master core Python with hands-on coding on LeetCode.
  • Showcase projects using Flask, Django, or pandas to highlight practical experience.
  • Practice DevOps integration with boto3 and ansible.
  • Discuss trends like async programming and data science libraries to show awareness.
  • Use resources like Python’s official docs and PyPI for solutions.
  • Communicate problem-solving clearly, blending technical depth with clarity.

What's Your Reaction?

Like Like 0
Dislike Dislike 0
Love Love 0
Funny Funny 0
Angry Angry 0
Sad Sad 0
Wow Wow 0
Mridul I am a passionate technology enthusiast with a strong focus on DevOps, Cloud Computing, and Cybersecurity. Through my blogs at DevOps Training Institute, I aim to simplify complex concepts and share practical insights for learners and professionals. My goal is to empower readers with knowledge, hands-on tips, and industry best practices to stay ahead in the ever-evolving world of DevOps.